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Abstract-We consider isotropic elastic-<iamage behaviour such that the evolution law ofthe unique
scalar internal variable characterizing material damage is associative ("d-associative" model). Two
particular variants of modelling are considered. More precisely, and because of some analogies
between these models and non-associative plasticity, we attempt to compare the loss of positiveness
of second-order work and the localization criteria. These criteria are written in terms of critical
damage. Thus, the damage value at loss of positiveness of second-order work is explicitly calculated
in three-dimensional and plane strain cases. The procedure leading to the damage value at local­
ization in the plane strain case is also presented. Both criteria are then compared for some loading
paths. The results obtained indicate the localization occurring be/ore loss of positiveness of the
second-order work for some loading paths for one of two models. The same loading paths were
tested with the other isotropic elastic-damage model; it is shown that localization always occurs
after the loss of positiveness of second-order work (Le. in softening phase). To endow this result
with more generality, we then consider the problem oflocalization through a spectral analysis which
finally shows that localization cannot take place in the hardening phase.

I. INTRODUCTION

The emergence of more or less large bands in which strain and damage become intense is
frequently observed in structures undergoing inelastic strain and/or damage. Various physi­
cal mechanisms can initiate such a band: heterogeneities, thermal softening, .... Never­
theless, we will use here the term localization to refer to situations in which the concentration
of strain and damage into a band emerges as an outcome of the very constitutive behaviour
of the material in the context of a static boundary-value problem.

From this point of view, localization is generally considered as a particular loss of
uniqueness ofvelocity field in the local rate problem. The question whether indeed the band
formation can be preceded by other kinds of non-uniqueness must then be investigated. In
particular, the comparison between the localization criterion and that ofloss of positiveness
of the second-order work is important. The sufficient conditions for uniqueness formulated
by Hill (1958), in the context of a boundary value problem and for an associative flow rule
or by Hueckel and Maier (1977) and Raniecki and Bruhns (1981) for non-associative flow
rules are indeed never violated if the second-order work is positive.

Following Hadamard's studies on elastic stability (1903) extended to the inelastic
context by Hill (1962) and Mandel (1966), Rice (1976) proposed to link the localization to
the incipience of discontinuities of the velocity gradients. He showed that in the case of
associative plasticity, the localization cannot occur in hardening phase (a: 8> 0). In this
study, we intend to compare both of the local criteria for loss of uniqueness in the specific
context of elastic-damage behaviour.

The two models studied here are based on the assumption that the material damage is
fully described by a single scalar internal variable d whose evolution is supposed associative
(we will call these models "d-associative"). On the other hand, no particular hypothesis is
formulated concerning the evolution of inelastic (i.e. damage related) strain 8in

• So, no
particular configuration (associative-like for instance) is fixed between the stress and inelas­
tic strain rate. The latter is solely governed by d and d. This remark shows that even though
these two models are"d-associative", they can resemble non-associative elastoplastic models
admitting in particular a:8in < 0 at some points of the stress-strain path. The consequences
of this peculiar form of constitutive behaviour on both of the local criteria previously
mentioned must then be precisely examined.
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In Section 2, we briefly present both elastic-damage models. The first of them is such
that all the elastic moduli are modified in the same linear way by damage. On the other
hand, only the shear modulus is modified by damage in the second model. The tangent
matrix L (i.e. such that i1 = L: 8) is specified for both models to calculate both criteria.

The three-dimensional criterion of loss of positiveness of the second order work is
explicitly calculated for each model in Section 3. In opposition to the elastoplastic case, this
criterion is written here in terms ofcritical damage rather than in terms ofcritical hardening
modulus. Furthermore this criterion is also specified for the plane strain case. The procedure
leading to the localization criterion is then presented.

In Section 4, two local criteria are applied to some simple homogeneous plane strain
test problems. Five proportional loading paths, characterized by the ratio fJ = Ov/O<
= Uy/U, are first tested. Finally, the results obtained allow us to compare both criteria and
to determine if localization may occur in the "hardening" phase.

The few simple loading paths tested with the first elastic-damage model are such that
localization always occurs after (or simultaneously with) the loss of positiveness of second­
order work, i.e. in softening phase. To generalize this result, we then consider in Section 5
the localization by means of spectral analysis as suggested by Ottosen and Runesson (1991).
This approach gives explicit analytical results for the critical damage value at localization
which can be compared to the one corresponding to the second-order work criterion.

2. ELASTIC-DAMAGE MODELS

We present here two small strain damage models. The assumption is made that the
material damage results in alterations of elastic moduli and is fully described by a single
scalar internal variable d. This damage variable can be interpreted either as a relative
porosity or as a microcrack density (assuming in this latter case that microcracks do not
have peculiar orientations). The existence of a thermodynamical potential (here the free
energy), a-quadratic and d-linear, is then postulated:

</>(a,d) = !C(d):a:a, (1)

where C(d) is the stiffness matrix of damaged material. Then, both the state relationships,
are:

(1 = o</>~: d) = C(d) :a,

o</>(a, d) _ IC'" . h C' - "lC(d)/"ldFd = - od - - 2 . a . a WIt - u u . (2)

In (2), Fd represents the thermodynamical force associated with d, i.e. the damage
driving force; its physical meaning is a strain energy release rate due to damage for a
constant.

The relationships between elastic moduli and damage (i.e. C(d)) may be obtained
either by a homogenization process or by a phenomenological approach. We will consider
here two particular forms of C(d); first of them (Modell) is the henceforward classical
phenomenological model, initially proposed by Lemaitre and Chaboche (1978):

C(d) = (I-d)CO, (3)

where CO is the stiffness matrix of the undamaged material. The model under consideration
plays-due to its simplicity and, in the same time, due to its completeness-the analogous
role in the mechanics of damage as does the Prandtl-Reuss model in the field of plasticity.
Indeed, it is a sort of reference model and as such, it deserves that different aspects of
bifurcation inherent to it be examined. This becomes even more crucial as the conclusions
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concerning various bifurcation events in the framework ofelastic-plastic behaviour cannot
be automatically extended to damage models. This feature will be developed further in this
paper (see Section 5).

Model I is such that all the moduli are modified in the same way by damage; more
particularly, the bulk modulus K decreases during damaging loading. This effect is widely
refuted by experimental measurements for brittle (e.g. rock-like) materials. To yield this
simple isotropic model roughly applicable to rock-like solids, Desoyer et al. (1990) proposed
to modify it in such a way that only the shear modulus is altered by damage. Then, the
stress-strain relation (2) 1 becomes (Model 2) :

(I = 2G(I-d)s'+K(s: 1)1,

(s' =s-1(s: 1)1),

where G is the shear modulus of undamaged material.
The damage criterion surface g(Fd ; d) = 0 is written in the form:

(4)

g(Fd;d) = Fd-k(d) = 0 with k(d) = !ko(l +2IXd) ;ko > 0 and IX ~ 0, (5)

where k(d) represents the actual damage threshold in the F"space with ko/2 designating
the initial one (at d = 0). The coefficient IX describes the progressiveness of the damage
limit. The greater IX is, the more "ductile" is the stress-strain curve (see Fig. I).

Assuming the damage rate d to be associative, we then have:

(6)

where), is the "damage-multiplier" (by analogy with the elastoplastic terminology) which
can be determined by using the consistency condition (g = 0) yielding:

\= ~ = (-C':s:Ii)+ ,aC(d)
a A k where C = ~d .

oIX u
(7)

Remark
The function k(d) is obtained from experiment and permits the expression of the

dissipation D during damage loading (D = Fdd = k(d)d since g(Fd, d) = 0 when d> 0).
Note that k(d) plays, with respect to Fd, the role analogous as the hardening function in
elastoplasticity in the stress space. k(d) describes the dimension of the elastic domain
referring to Fd while k'(d) gives the evolution of this domain, like k(p), (yield limit in
classical isotropic hardening plasticity).

For each of these models, the tangent matrix L (such that iJ = L: s) is given in
somewhat general form by :

U(MPa)

200

100

E(l-d)

0.01

---
0.02

Fig. I. Characteristic simple tension curve for elastic-damage behavior (E = 25 GPa; v = 0.25;
k o = 0.1 MPa).
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Fig. 2. Analogy possible between non-associative elastic-plastic behaviour and elastic~amage

(d-associative) behaviour: configurations verifying iJ: il,n < O. (a) non-associative elastic-plastic
behaviour; and (b) elastic~amage behaviour. Note that no plasticity-like criterion is specified for
the damage related inelastic strain rate ;in. The criterion introduced (g,,; 0) governs the damage

evolution and influences ilin indirectly (through 11).

{

C(d)

L = H = C(d) - k:a (C: 8) ® (C: 8)

if g < 0 or g = 0 and 9 < 0,

if g = 0 and 9 = o. (8)

Note that the difference between the two models resides in the form of C.
By way of conclusion of this brief account on both elastic-damage models, note that

no particular assumptions are made on the evolution law of the inelastic part of the strain
rate tensor due to damage ilin. It can be written as:

(9)

In fact, ilin may eventually admit the configuration illustrated in Fig. 2 usually char­
acterizing non-associative elastic-plastic behaviour (a: ilin < 0). So, referring to the results
given by Rice and Rudnicki (1979) and Borre and Maier (1989) we can neither assure that
the continuous bifurcation (i.e. L = H inside and outside the band) occurs before the
discontinuous one (i.e. L = H inside the band and L = C(d) outside the band) nor that
localization happens only in the softening phase.

3. NON-UNIQUENESS CRITERIA

3.1. Localization criterion
Following studies by Rice (1976) and Rice and Rudnicki (1980) on localization and

more recent works by Chambon (1986) and Benallal et al. (1989), we choose for the
localization criterion the loss of ellipticity ofcontinuous equilibrium rate relationships (we
do not consider here the effects offree boundaries and interfaces on localization).

Let us consider a macroscopically homogeneous material element subject to a homo­
geneous stress or displacement at its boundaries. At some loading range, it deforms in a
homogeneous manner (i.e. stress, strain and more generally all internal variable fields are
homogeneous). For some loading level, the bifurcation of the rate of displacement iti,] may
occur across a fixed singular surface (localized band) leading to damage localization as
well. Considering the local rate problem, the localization implies the difference between the
value of Ui,j for the bifurcated and primary fields; the corresponding strain rate il becomes
discontinuous across the band of a local normal vector n, i.e. :

[ill = (g® n)" (10)

where g is the amplitude of strain rate jump.
Denoting by a1the stress rate within the band and by aO the stress rate outside the

band, conservation of equilibrium across the band requires:
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alon = a O on.
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(11)

Accounting for strain rate jump and tangent matrix definitions, this condition can be
expressed as :

(12)

where SO is the strain rate outside the band. Two different cases must then be examined :

(i) V = L O = H ("continuous bifurcation": damage-loading inside and outside the band).

In this case, (12) becomes:

H: [i] on = O.

Accounting for (10) and minor symmetries ofH(H;jkl = H;jlk), (13) gives:

(noHon) 0g = o.

(13)

(14)

Finally, a necessary and sufficient condition for the incipience of a strain rate jump across
a locally planar band oriented by n is given by:

det(noHon) = o. (15)

(ii) L 1 = Hand LO = C(d) ("discontinuous" bifurcation)

In such a case, which corresponds to a damage loading inside the band and an elastic
unloading outside, Borre and Maier (1989) have shown that a necessary and sufficient
condition for the incipience of localization can be written as :

det(noHon) ~ o. (16)

Note that, owing to the fact that this inequality is not strict, continuous and dis­
continuous bifurcation may occur simultaneously. Nevertheless, we will later restrict our
consideration to continuous bifurcation condition oflocalization. In the case ofplane strain
in the (x, y) plane, for both of the elastic damage models under consideration, (15) is
equivalent to :

A I cos4 O+A 2 cos2 O+A 3 sin ocos 30+A 4 sin OcosO+A s = 0,

(cosO = noy), (17)

where the coefficients A;(i = 1-5) are functions of material constant (E, v; k o, oc) and of 8

and d (see Appendix I for more details). Thus, for a given mechanical state (8, d), the
eventual solution of (15) gives the orientations of localization bands. The critical damage
value at localization is denoted as d,.

3.2. Loss ofpositiveness of the second-order work criterion
The choice ofpositiveness ofsecond-order work as the uniqueness criterion is motivated

by the fact that the sufficient conditions for uniqueness, established by Hill (1958) for the
associative flow rule or by Hueckel and Maier (1977) and Raniecki and Bruhns (1981) for
the non-associative flow rule in the context of a boundary value problem, are never violated
if the second-order work is positive. It is written:

w= ~a:i ~ 0 Vi.

Thus, the loss of positiveness of second-order work is equivalent to the requirement:

3ilw= ~8:L:i = 0,

SAS 31:5-K

(18)

(19)
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which constitutes what we will call later on, for the sake of simplicity, the "second-order
work criterion". The critical damage ds solution of (19) is found to correspond to the
solution ofa constrained minimization problem (see Appendix 2). In the three-dimensional
case, it is given for both the elastic-damage models by the single formula as follows:

(20)

Note that ds is in some manner a sort of material characteristic, fully independent of
loading path.

Remarks
(i) When Ct < 1, (20) leads to an inadmissible value of ds(ds < 0). In fact, and in

opposition to what is assumed to prove (19) (see Appendix 2), such materials cannot have
any mechanical state (e, d) with d =F 0 and iJ: il > O. They are immediately softening when
the initial damage limit is reached.

(ii) The plane strain case imposes an additional condition to the minimization problem
leading to the second-order work criterion. It does not however modify the previous
criterion for the first elastic-damage model studied (Modell). Nevertheless, for Model 2
this criterion becomes:

. 9K+2G(I-d) . 2 _ koCt
e.e- 18K+6G(I-d) (e. 1) - 2G (I-d). (21)

Hence, in opposition to the three-dimensional case, this criterion is here a function of
the loading path.

4. COMPARISON BETWEEN THE LOCALIZATION AND SECOND-ORDER WORK CRITERIA
FOR PLANE-STRAIN BI-EXTENSIONS

The results presented above permit one to interpret both criteria for a given loading
path. More precisely, because of some analogies of the elastic-damage models under
consideration with non-associative elastoplastic ones, we look for one loading path (at
least) for which the critical value of damage d( relative to the localization criterion is lower
than this corresponding to the second-order work criterion (dJ.

The first problem we deal with is that of plane-strain proportional bi-extension of a
square domain n, such that f3 = Uy/Ux = Uy/Ux is constant during all the loading-path.
The mechanical state (e, d) obtained is homogeneous.

Two "second-order work curves" are presented on Figs 3 and 4 (SOWI and SOW2).
The first of them (SOWI) gives the value of damage when the second-order work criterion

d

0.48

0.40
LOC

0.32 SOW1=SOW2

--!;-1-----0.t-.-;=-5---+,0.-----,Oh.5~-----!--+f3

Fig. 3. Modell; critical damage versus p(proportional loading path) : LOC: damage at localization
(dt ); SOW ,: damage verifying second-order work criterion (d,); and SOW2: damage at loss of

positiveness of second-order work for the considered loading path.
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d

0.30

-1 -0.5 0 0.5 1 f3
Fig. 4. Model 2 ; critical damage versus P(proportional loading path) : LOC: damage at localization
(dt ); SOW 1 : damage verifying second-order work criterion Cd,); and SOW2: damage at loss of

positiveness of second-order work for the considered loading path.
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is satisfied. This criterion is a sufficient, but not a necessary one, for the loss of positiveness
of second-order work. That means that for a given loading path, mechanical states for
which the second-order work is positive may exist even though the second-order work
criterion is satisfied. The second curve (SOW2) gives the damage value which actually
makes zero second-order work for a.given value of p.

Figure 4 clearly shows for Model 2 that localization may occur before loss of posi­
tiveness of second-order work, i.e. in hardening phase (a: 8> 0). On the other hand, one
can see from Fig. 3 that d( ~ ds for Model I, Le. localization always occurs in softening
phase.

In fact, some other results based on finite element computations coupled with a
numerical version of the localization criterion seem to give prominence to an analogous
conclusion, i.e. localization cannot occur in the hardening phase. To give more generality
to this result established for Model I, we then propose a new expression of the localization
criterion. This is inspired by the recent works by Ottosen and Runesson (1991) who consider
the localization through spectral analysis.

5. SPECTRAL PROPERTIES OF THE LOCALIZATION CRITERION

Denoting by Q the characteristic tangent stiffness modulus tensor (or acoustic tensor),
i.e. :

(22)

the localization condition (see Section 3.1) can be rewritten as follows:

(23)

Non-trivial solutions of (23) are possible only when Q is singular; it is then natural to study
the spectral properties of Q. More precisely, following Ottosen et al. (1991), we consider
the (right) eigenvalue problem:



740

where:
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(24)

(25)

Since Qed is symmetrical and positive definite (like CO), it possesses the symmetrical
and positive definite inverse ped. Assuming d =f. I, the eigenvalue problem (24) can then be
rewritten:

(26)

where, due to the particular definition of L for Modell (see Section 2), B is:

(27)

It can then be observed that 1 is an eigenvalue with a multiplicity of two. We then have
for the remaining eigenvalue A.:

Hjj = 2+A.,

where H;; can be specified using eqn (27), i.e. :

(28)

(29)

It finally appears that there exists only one possibility for a non-trivial solution of the
localization criterion (see eqn (15) section 3.1), namely that A. = O. Then, expressing 8 in a
coordinate system colinear with its principal directions and splitting it into deviatoric and
volumetric parts, this condition (A. = 0) gives:

where,

E I l+v (I+V)2 2
G = 2(1 +v)' t/J = 2(1-v)' r = 3(1-v) Bkb k = - 18(1-v)(1-2v) Bkb

and

The relation between 8 and d is simply obtained from the damage loading condition,
namely g(Fd ; d) = 0 (see Section 2).

The critical damage value at localization d( is then defined as the minimum value of d
verifying (30), i.e. with respect to a variation of the localization band direction n; for a given
state:

d( = min d(n;). (31)

Equation (30) is fully analogous to that obtained by Ottosen and Runesson (1991)
and defining the critical hardening modulus at localization for a general class of plasticity
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models which shows once more the analogies between elastic damage models and non­
associative elastoplastic ones. The results established by these authors can be then used to
specify the critical damage value at localization (d() which appears to be function of IX and
v only and of the ratio between strain components, i.e.

where,

d( == d(IX, v, '1, X), (32)

(33)

Remark
The procedure leading to d( makes it necessary to distinguish various strain paths in

relation to '1 and X. The analogous procedure in plasticity is detailed by Ottosen and
Runesson (1991). It then appears that for each particular strain path, a very complex
explicit form for d( is obtained; this is not performed here. To determine whether the
localization can occur before loss of positiveness of second-order work, it is sufficient to
determine d"t'in (see below) and not particular d(. However, as an example, the procedure
leading to both d( and drn is given in Appendix 3 for plane-strain bi-extensions (see also
Section 4).

To compare d( with the critical damage value at loss of positiveness of second-order
work ds (see Section 3.2) we then look for the lower bound drn of d(. The purpose is thus
to find this critical value d"t'in which is defined as the minimum value of d with respect to
v, '1 and X, i.e.

(34)

An example of this minimization procedure is given in Appendix 3. It finally appears
that, whatever mechanical state (characterized by '1 and X) considered, d"t'in is defined by:

IX-I
dmin(lX) =--

( 3IX ' (35)

which is equal to ds • Thus, despite some analogy with non-associative elastoplastic models,
this elastic-damage model (Modell) does not allow localization occurring in hardening
phase. From this point of view, it presents an obvious similarity with associative elas­
toplasticity.

6. CONCLUSION

Two local criteria for loss ofuniqueness ofvelocity gradients for the local rate problem
have been established for "d-associative" isotropic elastic-damage models. For each oftwo
models, the critical damage value corresponding to loss of positiveness of the second-order
work was explicitly calculated by a constrained minimization process. The critical damage
value at localization has then been calculated for specific loading paths (plane-strain bi­
extensions): these results have been sufficient to confirm the analogy to the non-associative
plasticity of the one of two models (Model 2), the localization being allowed to occur in
hardening phase. On the other hand, for the other elastic-damage model (Modell), only
a spectral analysis of the localization problem permitted the determination of the critical
damage value at localization for the arbitrary loading path. It then appeared that this model
does not allow the localization occurring in hardening phase, the same being true for the
associative plasticity.

These results show in the first place that the results established in elastoplasticity for
the loss of uniqueness of velocity gradients, for the local rate problem cannot be simply
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extended to damage models: the existing analogies between "d-associative'" and non­
associative elastoplastic models (which arise when no particular assumptions are made on
the evolution law of the inelastic part of the strain rate tensor due to damage growth) should
not overshadow the differences occurring when considering the localization mechanisms.

Otherwise, these results confirm the unfitness of Modell to describe the mechanical
state for the onset of localization in brittle rock-like materials for which numerous exper­
imental data clearly show that the localization can occur in hardening phase (Santarelli,
1989). Improved models, using for example a tensorial damage internal variable (Dragon
et al., 1993) describing the oriented character ofmicrocrack-sets in brittle rock-like materials
would be able to describe in a much more realistic manner the localization events in such
materials. When considering a scalar damage variable, an alternative solution can be found
by considering higher-order displacement gradients. Thus, following the work of Zbib and
Aifantis (1989) on the gradient-dependent theory of plasticity we can view the introduction
of a gradient-dependent damage limit in Modell, these higher order gradients describing,
in some manner, the macroscopic manifestation of the inhomogeneous evolution of the
microstructure of the material. Besides the fact that the aforesaid authors showed, in the
elastoplastic case, that these higher-order gradients influence the critical mechanical state
for the onset of localization without altering the orientation of localization bands, this
approach has the ability to give an estimation of the thickness of the localization band, the
latter being impossible using classical models.
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during the preparation of this paper.
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APPENDIX I. EXPRESSION OF THE COEFFICIENTS AiU = 1-5) APPEARING IN THE
LOCALIZATION CRITERION FOR BOTH OF THE ELASTIC-DAMAGE MODELS IN THE

PLANE STRAIN CASE

Expressing the damage branch H of the tangent matrix in (x I' x,) system of coordinates such that n =' (0,
I), the localization criterion [see Section 3.1, eqn (15)] is rewritten:
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det (Hi2k2) = O. (AI)

For both of the elastic-damage models considered here, (Ai) is equivalent to:

A I cos4 0+A 2 cos2 O+A 3 sinOcos3 O+A 4 sin OcosO+A s = 0 (A2)

with cos 0 = n' y, where the coefficients A;(i = 1-5) are functions of material constants (E, v; ko, IX) and of e and
d. We give below the expression of these coefficients Ai for each of the models in the plane strain case.

Modell

Al = -E[(eyy -exx)2-4e';y),

A 2 = 2E[eyy(eyy-exx)-28~¥),

A 3 = 4Ee.xy(eyy-exx),

A 4 = -4Eexyeyy ,

As = 2E(l-v)e;y+ [E[(I-v)exx +veyyFj(I-2v)] -kolX(i-d)(l-v)(1 +v).

Model 2

A I = 4G[G(I-d)+3K][4e;y- (eyy-exx)lj,

A 2= 2G[6Ke;y+2[2G(1-d)+3K]e;y-4[G(1-d) +3K](2e;y+exXeyy»),
A 3 = 16G[G(I-d)+3K]exy(eyy-exx),

A 4 = (SGj3){[4G(1-d) +9K]exx - [IOG(l-d) +9K]eyy }eXY '

As = (16G2j3)(l-d)(e;y-eyyexx) +(4G 2j3)(1-d)(e;y + 128';y) + 12GKe;y

(l-d)kolX[4G(1-d)+3K],

where:

E E
G=2(I+v); K=3(1-2v)"

APPENDIX 2. THREE-DIMENSIONAL SECOND-ORDER WORK CRITERION FOR BOTH
ELASTIC-DAMAGE MODELS

(A3)

(A4)

Let us recall that for both elastic-damage models, the constitutive law can be written in the unique general
manner:

from which we have:

iT = C(d):a+aC':e.

Thus, second-order work criterion becomes:

W(a) = ~iT:a = HC(d):a:HaC':s:a) = O.

(AS)

(A6)

(A7)

Accounting for the definite-positiveness of C(d), which assures that W(i) is always strictly positive in purely
elastic phase and the fact that only the sign of W(i) is important for our purpose, we may suppose J = I.t Thus,
the second-order work criterion can be rewritten as:

{
~(a) ~ H~(d): il:HC' :e:i] = 0,

WlthC :S:S+kolX=O,
(AS)

the second equation (AS) signifying a damage loading (9 = 0).
W(il) is strictly convex. Thus, the study of second-order work criterion is equivalent to the study of the sign

of the minimum of W(il) with the constraint of damage loading, Le.

8gn {~n ~ [C(d) :il:il+C':s:il] with C':Il:il+kolX = o}. (A9)

This equality-constrained minimization problem equation reduces to the unconstrained minimization of the
Lagrangean function:

t All mathematical derivations presented are fully independent of this assumption (J = 1). It is just to simplify
the mathematical writing that this choice was made.
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W·(il, w) = ! (C(d): il: il+C': £: il)+w(C': £: il+koex), (A 10)

where w is a Lagrangean multiplier. The derivatives of W· with respect to all variables must vanish, i.e.

{

OW.
T = C(d):il+!C':£+wC':£ = 0,

oW·ow = C' :£:il+koex = O.

The solutions of these equations are:

{

ilo = - C+~wo)D(d) :C' :£ where [D(d) == C- I(d)],

koex I
W o = C':s:D(d):C':s - 2'

(All)

(AI2)

The minimum work Wo = W(il") must vanish when the second-order work criterion is satisfied. Thus, the
criterion is written:

which finally gives:

C' : s: D(d) :C' :s = koex, (AI3)

(AI4)

APPENDIX 3. AN EXAMPLE OF THE LOWER BOUND OF d,(dr in): THE PLANE-STRAIN
BI-EXTENSIONS

Following the results established by Ottosen el al. (1991), the determination of the critical damage value at
localization d, makes it necessary to distinguish diverse strain configurations. In the peculiar case of plane-strain
bi-extensions, 71 and X(see Section 4.2) are such that (assuming £1 ~ £2 ~ 62):

x=O; 71E[O, I],

d( is then given by:

(ex-I)[(l-V)2 +71V(2-2v+71v)J+ex712(1-2v)
d(ex, v, 71) = 2 2

3ex[(I-v) +71v(2-2v+71v)]+ex71 (1-2v)

Looking for the minimum of d,(ex, v, 71) with respect to 71, we can then observe that:

Sgn(d(.•) = Sgn[2ex(2ex+l)(v-I)(2v-I)71(l-v+71v)],

where

From ex ~ I (see Section 2), VE [0, n, 71E [0, I], d,.JI is always positive and d( is minimum when 71 = 0, i.e.

(AI5)

(AI6)

(AI7)

(AI8)

which finally confirms that localization cannot occur in the hardening phase for plane-strain bi-extensions (see
also Section 4.1).


